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Abstract
We prove a characterization of µ-limit sets of two-dimensional cellular automata, similarly as in
the one-dimensional case. This is the set of all asymptotic behaviours up to the uniform Bernoulli
measure, i.e. after getting rid of exceptional cases.
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Introduction

Cellular automata are discrete dynamical systems defined by a local rule, introduced in the
40s by John von Neumann [11]. They model a large variety of discrete systems and are
linked with various areas of mathematics or computer science, in particular computation
theory, complex systems, ergodic theory and combinatorics.

One of the main catalysts of the study of cellular automata was their surprisingly complex
and organised behaviours, even when iterated on configurations with no particular structure
(e.g. chosen at random). To formalise these observations, many authors tried to describe
their asymptotic behaviour by considering the limit set, which is the set of configurations
that can be reached after arbitrarily many steps. These sets were shown to have potentially
high computational complexity [10, 1], and any nontrivial property on them is undecidable
[8]. Nevertheless, the problem of characterizing which subshifts can be limit sets of CA
remains open.

In 2000, Kůrka and Maass argued that limit sets did not provide a good description of
empirical observations and introduced instead a measure-theoretical version [9]. The idea of
µ-limit sets is to choose the initial configuration at random, according to some probability
measure µ, and to consider all patterns whose probability to appear does not tend to 0. In
the one-dimensional case, similar results of high complexity and undecidability were found
[4, 3, 6, 2]. Another approach was developped in [5], considering the limit probability
measure, with similar results.

In this article, we consider the two-dimensional case and prove a characterization of all
subshifts that can be µ-limit sets of CA for µ the uniform Bernoulli measure. The method
is constructive and inspired by the one-dimensional constructions in [2, 5].

1 Definitions

1.1 Cellular automata on two dimensions
I Definition 1 (Configurations, patterns, cylinders).

Let A be a finite alphabet. We introduce AZ2 the set of (two-dimensional) configura-
tions. Denote A∗ the set of finite patterns, that is, any element of AU for some U ⊂

finite
Z2
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2 Construction of µ-Limit Sets of Two-Dimensional Cellular Automata

(denote U = supp(u) the support of the pattern u). Such a pattern is said to be square or
rectangular if its support is.

For a pattern u ∈ A∗ and i, j ∈ Z2, define the cylinder [u]i,j = {x ∈ AZ2 : x(i,j)+supp(u) =
u}.

Endowed with the product topology, AZ2 is a compact and metrisable space. A distance
inducing this topology is:

∀x, y ∈ AZ2
, dC(x, y) = 2−∆(x,y) where ∆(x, y) = min{i+ j | i, j ∈ Z2, xi,j 6= yi,j}

The frequency of a pattern u ∈ A∗ in another pattern v ∈ A∗ is defined as:

Freq(u, v) =
#
{

(i, j) ∈ supp(v) : (i, j) + supp(u) ⊆ supp(v)
v(i,j)+supp(u) = u

}
# {(i, j) ∈ supp(v) : (i, j) + supp(u) ⊆ supp(v)} and 0 if this expression is undefined.

I Definition 2 (Shift actions).
Define the two shifts actions σ↑, σ→ : AZ2 → AZ2 by:

∀x ∈ AZ2
, i, j ∈ Z2, σ→(x)i,j = xi−1,j and σ↑(x)i,j = xi,j−1.

I Definition 3 (Cellular automata).
A (two-dimensional) cellular automaton is a continuous action F : AZ2 → AZ2 that

commutes with σ→ and σ↑. Equivalently, it can be defined by a local rule F : AUF → A,
where UF ⊂ Z2 is a finite neighbourhood, in the sense that

∀x ∈ AZ2
, i, j ∈ Z2, F (x)i,j = F ((x(i,j)+u)u∈UF

).

This equivalence is known as the Curtis-Hedlund-Lyndon theorem [7].

1.2 Probability measures
I Definition 4 (Probability measures on AZ2).

Let B be the Borel sigma-algebra of AZ2 . Denote by M(AZ2) the set of probab-
ility measures on AZ2 defined on the sigma-algebra B. Let Mσ(AZ2) be the σ↑, σ→-
invariant probability measures on AZ2 , that is to say the measures µ ∈ M(AZ2)
such that µ(σ−1

↑ (B)) = µ(σ−1
→ (B)) = µ(B) for all B ∈ B. For a continuous application

F : AZ2 → AZ2 , denote Fµ the image of the measure µ by F : Fµ(X) = µ(F−1(X)).

I Definition 5 (Bernoulli measure).
The Bernoulli measure µλ ∈ Mσ(AZ2) associated with λ = (λa) ∈ [0; 1]A such that∑
a∈A λa = 1 is defined as:

∀u ∈ AU, µλ([u]) =
∏

(i,j)∈U

λui,j
.

I Definition 6 (µ-limit set).
Let F : AZ2 → AZ2 be a CA and µ an initial probability measure. The µ-limit set of F

Lµ(F ) is defined by:

u ∈ Lµ(F )⇐⇒ F tµ([u]) 9
t→∞

0.
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1.3 Computability

The standard Turing machine model has access to a one-dimensional working tape than can
be infinite on one or both sides. We consider in this paper that the machines have access
to a two-dimensional tape infinite in all directions, in order to simplify some constructions.
The only difference is that the computing head, when reading the current state and the
letter on the tape at its current location, has the ability to move in four different directions:
↑, ↓,→,←. This model remains exactly as powerful as a Turing machine.

I Definition 7 (Computable sequence of patterns).
A sequence of patterns (un)n∈N ∈ (A∗)N is computable if there exists a Turing machine

that, given as input an integer n written in binary, stops and outputs un.

I Proposition 8. Let F : AZ2 → AZ2 be a CA and µ ∈ Mσ(AZ2) be the uniform Bernoulli
measure. Then there is a computable sequence of square patterns (wi)i∈N such that

u ∈ Lµ(F )⇐⇒ Freq(u,wi) 9
t→∞

0.

The sequence is built using de Bruijn tori, combinatorial object constructed explicitely in
[HI93]. Due to space constraints, the proof is in the appendix.

2 Main theorem

I Theorem 9. Let µ be the uniform Bernoulli measure and (wi)i∈N a computable sequence
of square patterns. Then there exists an alphabet B ⊇ A and a cellular automaton F over
B such that :

u ∈ Lµ(F )⇐⇒ Freq(u,wi) 9
t→∞

t→∞0.

This theorem with Proposition 8 gives hence a characterization of all µ-limit sets for µ the
uniform Bernoulli measure.

The proof of the theorem relies on an explicit construction and we will effectively prove
the result by describing the CA.

Similarly to what was done for one-dimensional CA in [2, 5], the idea is, starting from
some random configuration according to a measure µ, to build a partition of connex subsets
of the plane using auxiliary states. In each subset, independently, each wi is computed
successively and concatenated copies of it are written over all the subset. To ensure the
density of auxiliary states tends to 0, they merge progressively in a controlled manner,
offering more space for computation.

3 Construction

3.1 Overview

First, we present a sketch of the different steps of the construction corresponding to a
computable sequence of patterns (wi)i∈N. The alphabet B will be divided into different
layers, each layer being used for a different auxiliary process. Each layer uses a different
alphabet containing a blank symbol # corresponding to the absence of information. The
main layer is the writing layer whose alphabet is A.
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Colonising the space: Section 3.2.
Starting from a random configuration drawn according to µ, we first want to “clean”
the randomly generated content of the auxiliary layers. B contains a seed state * .
Each seed, at time 1, erases the contents of a small area around it and give birth to
membranes growing in every direction except when they meet other membranes. They
erase all information contained in the auxiliary layers and membranes faking life which
are recognized with the help of age counters.
Internal metabolism : partitioning the cleaned space. Section 3.3.1.
Each seed gives birth to a heart r that will be the core of a living organism. Every
organism owns an age counter making sure they are all synchronized. Periodically, from
each living heart, the organism will grow in each direction until it meets a fellow organism,
thus claiming its territory.
Internal metabolism : fighting for survival. Section 3.3.2.
We will need organisms larger and larger through time, hence we regularly have to remove
some of the hearts. When two hearts are too close, one of them is removed to ensure
that the distance between hearts is large and tends to infinity.
Internal metabolism : Computing and writing. Sections 3.3.4 and 3.3.5.
In each organism, when the territory is established, some wn is computed and then
written all over the territory. Copies of it will hence cover the cleaned surface inside
membranes.

Throughout this article, t refers to the number of steps since time 0.

3.2 Colonisation of the space
3.2.1 Growing squares
There is a particular seed state * that can be present only in the initial configuration. It
is the only relevant information in the initial configuration. Every occurrence of * triggers
the birth at time 1 and subsequent growth of a living square-shaped membrane (initially
forming a 5× 5 cells square).

If seeds are too close from each other and do not have enough space to form the initial
organism, the northernmost seed is destroyed (westernmost in case of a tie). This choice is
arbitrary.

A layer of the alphabet, called cleaning layer is dedicated to the membrane growth
and cleaning process. The membrane spreads slowly to the outside, thanks to a respiration
process that "pushes" the membrane to the outside.

A membrane is a boundary between its inside and the outside, thus defining the direction
in which it expands. To each point of the membrane is associated a binary counter that
keeps track of its age (see Figure 1).

I Definition 10 (Redundant binary basis).
Let c = cn−1 . . . c0 ∈ {0, 1, 2}n be a counter. The value of c is

∑n−1
i=0 ci2i (reverse order).

Since 2 = 10, 2 can be seen as a 0 with a carry.

At each step, the counters are incremented by adding one to the least significant bit
and the carries are propagated along the counter, which can be done in a local manner
(02→ 10, 12→ 20).

If the membrane has sides of length n, there are n such counters on each side with the
same value, with superpositions of two of them in the cells near the corner. As they grow,
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Figure 1 Corner of a membrane extending to the north and the east.

they need more than one cell and form a band of growing width along the membrane as
shown in Figure 1. For a living membrane, the counters are created with value 0 at step
t = 1, ensuring their age is the current time minus 1. In the other cases, the membrane
and counters already existed at time t = 0 (with value at least 0), which means they appear
older than living membranes.

This counter is used to control the speed of the membrane. The respiration process
consists in taking a step forward (according to the direction of the membrane) each time the
age of the counter is the exact square of an integer. The successive squares are computed
under the counter, on the computation layer, using a space O(log t) if t is the age of the
membrane.

We can define three kinds of membranes:
Living membranes which were created by a seed, and whose counters all have value t− 1;
Dead membranes which have some incoherence (not closed, different counter values, no

square computation...) and self-destructs when realising this;
Zombi membranes which are perfectly coherent despite not being created by a seed, and

whose counters all have the same value t′ > t− 1.

The information contained in any cell outside a membrane is deleted, except for the
encounter of another membrane. In this case the comparison process starts. The reason
membranes spread slowly is to limit the interferences between the growing and comparaison
processes.

3.2.2 Comparison
When two membranes meet, membranes fight for survival, which is only granted to the
youngest. Indeed, we saw that only living membranes can have age t−1, all other membranes’
counters having value greater than t. Comparing the age of both counters is achieved on a
dedicated comparison layer.

Two special states a are written on the comparison layer as membranes meet to trigger
the process. Each of them progress along its corresponding counter and copy the value of
the counter on the comparison layer after it. Incrementation and carry progagation continue
in the original counter. However, it is not necessary to increment and propagate carries in
the copied counter since they would increase by the same amount during the comparison
anyway. During the copy into the comparison layer, all carries are taken into account and
resolved, thus, at the end of the copy, remain two pure binary counters.
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Both copied counters progress towards the membrane at speed 1 and a comparison is
performed bit-by-bit, starting from the least significant. When the last bits of the counters
arrive at the comparison point, we can decide which counter corresponds to the youngest
membrane.

A B C Dm1(t1) m2(t1) A B C D

m2(t2)

m1(t2)

Figure 2 At time t1, the membranes m1 and m2 meet on cells A, B, C and D. The counters
are represented by grey areas. At t2, when the comparison is finished, one of the squares may have
grown (here m2).

As shown in Figure 2, if at time t1 two membranes meet, comparison of the age of counters
takes place at each contact cell. Here the same process takes place at cells A, B, C and D.

I Proposition 11. During a comparison process, a living membrane may grow only once
(including the initial growth that triggered the comparison)

Proof. If the comparison process started at time t0, the counters of a living membrane have
length less than log(t0). The comparison process takes at most twice as many steps as the
length of the counter. The respiration process happens when t is a perfect square. Therefore
the time between two successive growths, at time t0 or after, is at least d

√
t0e steps. J

Let us consider the various possible results:
The membranes have the same age : they are both alive or both zombi. In any case, both

membranes turn into a single one as shown in Figure 3. Some & symbols are written at
the corners, so that, when both sides will grow again, they remember they are part of
the same membrane.

A membrane is younger : the oldest one is zombi and can be safely destroyed. A death
signal A spread in both directions along the oldest membrane, erasing it. The surviving
membrane resumes its growth, with its age counters still accurate. The same happens if
a membrane grows twice, disrupting the comparison process.

Notice that only the membrane and not the "insides" of the zombi are cleaned since it
can contain other living membranes.

None of the signals or processes described in the following sections can enter or leave a
membrane, or interact with it or counters, except if explicitely mentioned.

For t ∈ N, denote

Pr(t) = {F t(c)| c ∈ BZ
2
, ∃x ∈ Z2, d∞(x, (0, 0)) ≤

√
btc, cx = * }

the set of images of configurations containing a seed * at distance
√
btc at most of (0, 0).

As µ is the uniform Bernoulli measure, the following lemma is clear :
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Figure 3 At the end of the comparison, if membrane counters share a common value, the common
part of their boudaries is erased and & symbols mark the corners.

I Lemma 12. F tµ(Pr(t)) = 1− (1− µ( * ))(2
√

(t)+1)2
→t 1

This means that, with probability 1, for almost any configuration the central cell even-
tually belongs to the insides of a living membrane.

3.3 Working in the clean surface
We now consider only the protected area, which is the union of all insides of living mem-
branes. Thus every construction presented in this section remains inside this area and stops
if it reaches the membrane. They will take place on four new layers : the age, partitioning,
computating and writing layers.

At some time tn = K2n, n ∈ N for some integer K that will be specified later, various
operations are performed simultaneously inside all membranes. First, a simulated Turing
machine computes wn. Then, repeated copies of wn are copied everywhere inside the mem-
brane. Meanwhile, the heart checks that it is not to close to a neighbour, and merge with
it if it is the case.

These operations all happen in the time between tn and tn+1− 1, which is called the nth
generation.

3.3.1 Claiming its territory
At time 1, while creating a membrane, each seed * transforms itself into a heart r . Any
heart is the centre of an organism to which it provides life. At the same time, a binary
counter is given to each heart, thus giving it the knowledge of its age. This age is exactly
the same for any heart inside a living membrane. This counter is the only thing contained
in the age layer.

In the rest of this section, only the partitioning layer is concerned.
At time tn, every heart send signals at speed 1 in each direction until they meet a

fellow signal, in which case they disappear and the symbol # is written where they met (if
the signals cross and not meet, the lowest, leftmost cell receives # ). These signals erase
everything on the partitioning and computating layers. The territory of heart H ∈ Z2 is
the largest set of 4-connected cells containing H that does not contain the symbol # . An
organism is composed of a heart and its territory.

Simultaneously, at t = tn, signals leave H and draw the body of H : a square of size
2n+ 1 centered in H. The body is supposed to be entirely in the territory of H, if not, the



8 Construction of µ-Limit Sets of Two-Dimensional Cellular Automata

organism is in conflict with every other organism whose body superimpose with its own. At
the end of each generation, we will make sure there does not remain any conflict by removing
some of the hearts.

Thus, the global dynamics partitions the protected space by redefining territories during
each generation, then resolves conflicts due to close hearts : during the nth generation, the
distance between two surviving hearts is at least 2n − 1. (Remember we use the distance
d∞.)

3.3.2 Choosing its destiny

In this section, we describe conflicts. To get organisms larger and larger through time,
we want them at least to contain entirely their body, whose size depends of the current
generation. We will need as well to control the growth of the organisms to avoid the case of
too large ones. Indeed, in the sequel, we will write all over the organisms and the writing will
have to be achieved before the beginning of the next generation. Thus, if at some step a chain
of conflicts between organisms appear, we do not want to erase all hearts simultaneously.

To avoid this, we add an algorithmic device and give to each heart some bit of information
with the constraint that these bits have to be mutually independent at any given time. Then,
for each conflict between two organisms, we will choose the one to delete thanks to the sum
of their two random bits.

First, we use two versions of the state * in the initial configuration : * 0 and * 1.
This bit is transmitted to r which now will be r 0 or r 1. In both cases, we will still use
notations * and r when the value of the bit does not matter. The bit is also known by
the whole boundary of the corresponding organism.

Second, note that, given some heart H living at generation n, the conflicting hearts are
at distance 2n − 1 or 2n. If less, they have conflicted before. Thus, they all belong to a
square of side 4n + 1 centered in H. The distance between eachother is also 2n − 1 or 2n,
hence there are at most 8 simultaneous conflicts whatever the generation, one at most in
each eighth part of the plane centered in H : NNE, ENE, ESE, SSE, SSW, WSW, WNW
and NNW.

To ensure that independence remains true, each time a heart is deleted, it should give
some new information to its killer. Hence, we give 8 other binary bits to each seed, and
therefore to each heart. Each eighth part of the territory’s boundary will carry one of these
reserve bits alongside with the main one.

During the nth generation, when two organisms O and O′ of hearts respectively r b at
(x, y) and r b′ at (x′, y′) meet, the sum β = b⊕ b′ is computed where the boundaries meet.
If β = 0 then the northernmost heart wins and the other way around if β = 1. Then
the boundary of the killed organism (say O′) offers its reserve bit br to the winner whose
main bit becomes b⊕ br. If some organism kills many others simultaneously (at most 8), it
sumss all the reserve bits that are given to its. The key point is that all main bits are and
remain independent. This is ensured since the reserve bits are not used until they pass to
the winner.

I Definition 13. Define the radius of an organism as the largest distance from a cell to its
heart. The territory of the organism is hence bounded by 4r2.

I Lemma 14. There exists a constant C, such that pn →n 1, where pn is the probability
that at least one living heart remains in a square of radius Cn during the nth generation.
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Proof. Denote qn, n ∈ N the probability for a cell to be a living heart during generation n.
For n = 0, q0 > 0 is a constant given by µ. Then, during generation k ≤ n, a heart survives
with probability at least (1/2)8 (1/2 for each conflict). Hence qn ≥ q0 ∗ (1/2)8n.

Two different cells have each independtly probability qn to be a heart as long as they
have not been in conflict with a common heart. At generation n, they have been affected
only by hearts at distance n2 at most. So there are dn = b(2Cn+1)/(2n2 +1)c2 independent
cells.

Now we have 1− pn ≤ (1− qn)dn . This tends to 0 for C = 17 for example.
J

This lemma means that we only need to consider organisms of radius less than Cn. The
other ones are sufficiently sparse.

I Definition 15. Denote K the constant given by the previous lemma.
An organism is said to be healthy during the nth generation when its radius is less than

Kn.

3.3.3 Shape of organisms
I Lemma 16. If a cell A is in the organism of heart H, then each cell B such that
d∞(B,H) ≤ d∞(A,H)− d∞(A,B) is in the same organism.

Proof. The triangle inequality gives the result automatically, for any other heart H ′ :

d∞(B,H) ≤ d∞(A,H)− d∞(A,B) ≤ d∞(A,H ′)− d∞(A,B) ≤ d∞(B,H ′)

J

I Lemma 17. F tnµ([ # ] ∩ Pr(tn)) = O(1/n)

Proof. Given n ∈ N, consider the set of cells containing state # at time tn+1 within the
protected area. It is possible to cut this set into horizontal, vertical or diagonal segments
such that each one of them is the common boundary of two specific hearts. When two hearts
claim their territory, they send signals in every direction at speed one. These signals may
eventually cross to give birth to the boundary. Except if they cross exactly in their corners
(hence four cells for each organism, which is negligible), the length of their common boundary
is at least 2. Consider one of these boundary segments containing cells {A0, A1, . . . Ak} and
denote H0 and H1 the associated hearts.

The proof is illustrated on Figure 4 in the case of a diagonal segment. Denote d the line
supporting the segment, as d∞(H0, H1) ≥ 2n, ∃j ∈ {0, 1} such that d∞(Hj , d) ≥ n. Denote
Oj the organism centered in Hj . Since A0, A1, . . . Ak are on the boundary of Oj , there exist
distinct points B0, B1, . . . , Bk−1 adjacent to A0, A1, . . . Ak and inside Oj .

I Claim 18. Every cell inside the triangle B0Bk−1Hj is inside Oj.

Proof. For any such cell x, there exists l ∈ [0, k − 1] such that d∞(Hj , Bl) = d∞(Hj , x) +
d∞(x,Bl), hence, using Lemma 16, x belongs to Oj . J

There are b(k− 1)(n− 1)/2c cells in the triangle B0Bk−1Hj , which means that for each
cell of the boundary segment, we produced O(n) cells inside an organism.

Any cell inside an organism can be attached this way at two segments at most (the
border of the triangle can be shared). Thus, for any cell containing # , there are at least
Θ(n) cells that do not contain # , hence F tnµ([ # ] ∩ Pr(tn)) = O(1/n).

J
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Figure 4 Two hearts H1 and H2 are conflicting. Cells A0 to A4 form the common boundary of
their territory. The red triangle is a set of cells inside the territory of H1.

3.3.4 Computing
In this section, we deal only with the computing layer. At time tn, n ∈ N, at each heart of
an organism, the same computation will start. While signals leave the heart to determine
the boundaries of their territory, other signals draw the limits of a square of side

√
n whose

downleft corner is the heart. This will be the space allowed for computation. The head of a
Turing machine starts its computation and it will have to remain in this space and halt in
less than K2n.

Without loss of generality, we can choose the computable sequence of patterns (wi)i∈N
such that wn is the pattern computed during the nth generation. Indeed, we can transform
the original sequence by repeting each pattern until there is enough space and time to
compute the following one. Denote Un the support of wn and ln its size : Un = supp(wn) =
[0, ln]× [0, ln]. Considering the space allowed for computation, we have that ln ≤

√
n.

3.3.5 Copying
Finally, our concern is the copying layer. After computing a pattern on the computing layer
of an organism, we will write copies of it over the whole territory of this organism.

During the nth generation, the computation takes less than K2n steps, which leaves
K2n+2 − K2n steps before tn+1. We will show that this is enough to periodically write
copies of the result all over the organism, as long as the organism is healthy.

Consider an organism of heart H = (xH , yH) during generation n. We first write 4
copies of wn around H at (xH − ln, yH − ln) + Un, (xH − ln, yH) + Un, (xH , yH − ln) + Un
and H + Un. To copy a square, a machine copies all the states sequentially. First, the
sides of the squares are marked on the copying layer with a state G (this takes O(ln) steps
using counters initialised with value ln), then the machine needs 2ln steps to go to the copy
emplacement, make the copy and come back. There are ln2 cells to copy, hence the whole
process of copying a square takes O(ln3) steps.

Starting with these 4 copies of wn, 4 different copying processes will take place, each
one in its quarter of the plane : north-east, north-west, south-west and south-east. We only
detail the process in the north-east quarter.

The base square is copied along the vertical and horizontal axes until it reaches the limit
of the territory. Simultaneously, each of these copies replicates itself in diagonal towards the
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Figure 5 The square pattern is copied all over the whole territory both on axes and along
diagonals, starting from the heart.

north-east. This way, the whole territory is eventually covered with copies of the computed
pattern wn. The set of states G draw a grid of step ln. The copying process is actually a
wave starting at the heart of the organism and extending the area where the pattern wn is
written. See Figure 5.

I Lemma 19. For any healthy organism, copying takes less than O(nKn) timesteps during
the nth generation.

Proof. Consider a healthy organism, as the radius is bounded by Kn and the grid step is
ln, there are sequences of at most Kn/ln square copies to do in each quarter. Each one of
these copies requires O(l3n) steps, hence the total copy time is O(nKn) (recall ln ≤

√
n). J

I Lemma 20. During the nth generation, any cell in a healthy organism that was not reached
by the copying process is at distance

√
n or less of the boundary of the territory.

Proof. Again, we prove it in the north-east quarter, the proof is symmetric in the other
cases. Take a cell A in the territory of a healthy organism and at distance more than ln of
the boundary of the territory. A is in a square S of the G grid (or would be by extending the
grid). Thanks to the hypothesis we know that S entirely belongs to the organism. The copy
process reached S, arriving from a square S′ at the south, east or south-east of S depending
of the position of S. Now, according to Lemma 16, S′ entirely belongs to the organism.

We can this way go recursively all the way back to the heart, and the copy process is
necessarily successful at each step. J

4 Proof of the main theorem

We saw in previous sections, that a configuration tends to contain only healthy organisms,
and that in a healthy organism, computing and copying can be both achieved in less than
tn+1 − tn timesteps. Hence we can conlude.

Proof. Given a sequence (wn)n, we build the cellular automaton F over the alphabet B as
described in the previous sections.

Suppose t = tn+1 − 1, n ∈ N. First, if s ∈ B rA, a cell can have state s if it is :
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outside the protected area, use Lemma 12;
outside a healthy organism, use Lemma 14;
in the border of a healthy organism, use Lemma 17;
in the computation area of an organism, which are negligible since this area is a square
of side

√
n in territories that contain a square of side n;

in the grid drawn in each territory (states G ), negligible as well since the grid occupies
less than 4ln cells in each square of side ln.

Therefore Lµ(F ) ⊆ A∗.
Now, we show that we only need to consider the squares of the grid entirely located in

a healthy organism. As said before, it is enough to restrict ourselves to healthy organisms.
Every square that is only partially inside a healthy field is located into a band of width less
than

√
n adjacent to the boundary of the field, hence there are at most O(1/

√
n) such cells

thanks to Lemma 12. As we forced i ≤
√
n, we can effectively neglect those partial squares.

In any other square, thanks to Lemma 20, we know that the copy was achieved successfully.
For all these reasons, for a square pattern u, F tnµ([u]) ∼n→∞ Freq(u,wn).
Moreover, during the nth generation, while the copying process is engaged but not fin-

ished, some part of the main layer contains copies of wn and the rest is still filled with copies
of wn−1, hence, for some 0 ≤ α ≤ 1 :

F tµ([u]) ∼n→∞
(
αF tnµ([u]) + (1− α)F tnµ([u])

)
J

Perspectives

As for the one-dimensional case, we have a characterization of all subshifts that are µ-limit
sets of CA. Some corollaries can be derived from this result, but the main open problem is
to generalize it to larger classes of measures. In dimension 1, the difference is that there is
no need for a trick such as the one used in Section 3.3.2 to resolve conflicts while avoiding
erasing too many hearts. As this trick only works with the uniform Bernoulli measure,
hence, a better understanding of the dynamics of disparition of the hearts should allow to
generalize the result.
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A Proof for Proposition 8

Proof. In [HI93], Hurlbert and Isaak provided a construction of (k2n2
, k2n2

, n, n)k-de Bruijn
tori for every integers k and n, that is, square patterns Tn ∈ {0, . . . , k}2

2n2
×22n2

such that all
square subpatterns of side length at most 2n are present with the same frequency (assuming
the subpattern are allowed to “wrap around” the border of the bigger pattern). Since the
construction in [HI93] is explicit, one can devise an algorithm that, on input n ∈ N, stops
and outputs wn.

Assume for the clarity of the proof that the neighbourhood of F is {−1, 0, 1}2 and let
f : A{−1,0,1}2 → A be its local rule. Define the image of a square pattern u under F , as an
abuse of notation:

F : An×n → An−2×n−2

u = (ui,j)0≤i,j≤n 7→ (F (ui±1,j±1))1≤i,j≤n−1

By definition, it is clear that for any square pattern u ∈ An×n,

Fµ([u]) =
∑

v∈An+2×n+2

F (v)=u

µ([u]) =
∑

v∈An+2×n+2

F (v)=u

1
|A|n2 .

Since all square patterns u of side length at most 2n are present with uniform frequency
µ([u]) = 1

|A|n2 in Tn, all square patterns of side length at most 2n − 2 are present with
frequency Fµ([u]) in Ftor(Tn) (where Ftor corresponds to the previous function applied in
a toroidal manner, i.e., “wrapping around at the border”). This process can be iterated.

Now define (wn)n∈N = (Fntor(Tn))n∈N. The sequence wn is computable by computing
u2n and applying the local rule of F . We show that this sequence satisfies the resquested
property.

Let u ∈ An×n.

u ∈ Lµ(F )⇔ ∃(ti)i∈N,∃d > 0, F tiµ([u])→ d

⇔ ∃(ti)i∈N,∃d > 0,⇒ Freq(u,wti)→ d,

the second line being obtained by considering that, as soon as ti ≥ n, u is present with
frequency F tiµ([u]) in F titor(Tti). Actually, this is not exactly true since our definition of
frequency does not allow for “wrapping around” the border as in [HI93]. However, when
determining the frequency of a pattern of side length n in wti ∈ A2ti2×2ti2 , this removes
only n×4ti2 possible positions out of 4t4i , and thus does not affect the density by more than
n
t2

i
→ 0. J
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