
Maximal Matching and Path Matching Counting
in Polynomial Time for Graphs of Bounded

Clique Width

Benjamin Hellouin de Menibus1 and Takeaki Uno2

1 ENS Lyon, France, benjamin.hellouin de menibus@ens-lyon.fr
2 National Institute of Informatics, Tokyo 101–8430, Japan, uno@nii.jp

Abstract. In this paper, we provide polynomial-time algorithms for dif-
ferent extensions of the matching counting problem, namely maximal
matchings, path matchings (linear forest) and paths, on graph classes of
bounded clique-width. For maximal matchings, we introduce matching-
cover pairs to efficiently handle maximality in the local structure, and
develop a polynomial time algorithm. For path matchings, we develop a
way to classify the path matchings in a polynomial number of equivalent
classes. Using these, we develop dynamic programing algorithms that
run in polynomial time of the graph size, but in exponential time of the
clique-width. In particular, we show that for a graph G of n vertices and
clique-width k, these problems can be solved in O(nf(k)) time where f
is exponential in k or in O(ng(l)) time where g is linear or quadratic in l
if an l-expression for G is given as input.

Keywords: maximal matching, path matching, counting, clique-width.

1 Introduction

Counting problems in graphs can be very difficult, i.e. #P -hard in the gen-
eral case, even for simple objects such as trees and independent sets. Research
on graph classes has been motivated by such “hard” decision or optimization
problems, and restricting the input to given graph classes has led to numerous
polynomial-time algorithms. Despite this, only a few useful algorithms for count-
ing problems exist, and these are relatively recent.

In this paper, we focus on counting maximal matching and path matching
(linear forest). Matching counting and all extensions considered in this paper
have been proved #P -complete in the general case. Some sparse graph classes
such as planar graphs or graphs of bounded tree-width allow polynomial-time
algorithms for perfect matching counting (see [13] and [1]); on the negative side,
Valiant, when introducing the class #P , proved that counting perfect match-
ings as well as general matchings in bipartite graphs is #P -complete [19, 20].
Valiant’s proof concerning matchings has since been extended to 3-regular bi-
partite graphs [8], bipartite graphs of maximum degree 4 and bipartite planar
graphs of maximum degree 6 [18].

The problem of counting perfect matchings in chordal and chordal bipartite
graphs is also #P -complete [16], but good results on independent sets [15] give
the impression that the chordal structure could nevertheless be interesting re-
garding matching counting. This led us to focus on a related graph class, the
(5, 2)-crossing-chordal graphs. We especially make use of the bounded clique-
width of this graph class.

Courcelle et al. introduced clique-width in [5] as a generalization of tree-
width, and it attracted attention mainly for two reasons. On the one hand, in
a similar fashion as the tree width, putting a bound on the clique-width makes
many difficult problems decidable in polynomial time (see for example [6]). On
the other hand, this class contains dense graphs as well as sparse graphs, which
leads to more general results.

Makowsky et al. already proved as a consequence of a result in [14] that
matching counting on graphs of bounded clique-width is polynomial in the size
of the input graph. In this paper, we will extend this result by adapting their
method to maximal matchings and path matchings. Our algorithms are poly-
nomial of the graph size, but exponential of the clique-width k, i.e., O(npoly(k))
time. It might be hard to develop a fixed parameter tractable algorithm such as
an O(cpoly(k)poly(n)) time algorithm, since many graph algorithms, e.g. vertex
coloring, have to spend O(npoly(k)) time unless FPT 6= W [1] [10].

The existing matching counting algorithms can not be used to count maxi-
mal matchings directly. The algorithms in [14] classify matchings of local graphs
according to their sizes and the colors of the endpoints, and then get informa-
tion about larger graphs by merging the matchings. However, in this way, each
classified group may contain both matchings included in maximal matchings and
those not included in any maximal matching. Actually, it seems to be difficult to
characterize the number of matchings included in some maximal matching, by
using only their sizes and their endpoints. In this paper, we introduce matching-
cover pairs for this task. When we restrict a maximal matching to a subgraph, it
can be decomposed into the matching edges belonging to the subgraph and end
vertices of matching edges not included in the subgraph. From the maximality,
the end vertices form a vertex cover of the edges of the subgraph. Thus, we count
such pairs of matching and vertex cover according to their sizes and colors, and
obtain a polynomial time algorithm for the problem.

For the problem of counting paths and path matchings, we must have some
way to handle the connectivity of edge sets. Actually, connectivity is not easy to
handle; for example, checking for the existence of Hamiltonian path is equivalent
to checking whether the number of paths of length n−1 is larger than zero or not.
Gimenez et al. devised an algorithm based on Tutte polynomial computation to
count the number of forests in bounded-clique-width graphs in sub-exponential
time, running in 2O(nc) time for constant c < 1 [11]. We use the properties
of bounded-clique-width graphs so that we can classify the path matchings in a
polynomial number of groups of equivalent path matchings, and thereby compute
the number of paths and path matchings in polynomial time.

2 Clique Width

We shall introduce clique-width on undirected, non-empty labeled graphs by a
construction method. Let Gi be the subgraph of vertices labeled i in a graph G.
We define the singleton Si as the labeled graph with one vertex of label i and
no edge, and the following construction operations:

- Renaming : ρi→j(G) is G where all labels i are replaced by labels j;
- Disjoint union : (V1, E1)⊕ (V2, E2) = (V1 ∪ V2, E1 ∪ E2);
- Edge creation : ηi,j((V,E)) = (V,E ∪ {(v1, v2) | v1 ∈ Gi, v2 ∈ Gj}).

The class of graphs with clique-width ≤ k is the smallest class containing the
singletons Si, closed under ρi→j ,⊕ and ηi,j (1 ≤ i, j ≤ k). In other words, the
clique-width of a graph G, denoted as cwd(G), is the minimal number of labels
necessary to construct G by using singletons and renaming, disjoint union and
edge creation operations.

For an unlabeled graph G, we define its clique-width by labeling all vertices
with label 1. This is necessarily the best labeling, since any labeling can be
renamed to a monochromatic labeling. Note that the clique-width of a graph of
order n is at most n.

(5, 2)-crossing-chordal graphs are known to have clique-width ≤ 3 [3] (we
recall that a (5, 2)-crossing-chordal graph is a graph where any cycle of length
≥ 5 has a pair of crossing diagonals). Other interesting results include: cographs
are exactly the graphs with cwd(G) ≤ 2, planar graphs of bounded diameter
have bounded clique-widths, and any graph class of treewidth ≤ k also has a
bounded clique-width of ≤ 3.2k−1 [4]. A complete review can be found in [12].

An l-expression is a term using Si, ρi→j , ηi,j and ⊕ (with i, j ≤ l) that re-
spects the arity of each operation. It can be represented more conveniently in
a tree structure, and we can inductively associate the current state of the con-
struction with each node. If G is the graph associated with the root, we say that
this term is an l-expression for G, and it is a certificate that G is of clique-width
≤ l. An example is given in Fig.1.

Fellows et al. proved the NP-hardness of computing the minimum clique-
width for general graphs [9]. The current best approximation is due to Oum
and Seymour [17], who provided a linear time algorithm that, given a graph G
and an integer c as input, returns an 23c+2-expression for G or certifies that the
graph has a clique-width larger than c.

This implies that we can compute in quadratic time a 23k+2-expression for
a graph of clique-width k by applying this algorithm for c = 1, 2 As the
bound is independent of n, algorithms requiring expressions as input will still
work in polynomial time, although the time complexity will usually be extremely
poor. For (5, 2)-crossing-chordal graphs, though, this is not a concern since it is
possible to compute a 3-expression in linear time [3].

An l-expression is called irredundant if every edge-creation operation ηi,j
is applied to a graph where no two vertices in Gi and Gj are adjacent. Any

η2,3

⊕

S3 η1,2

⊕

⊕ ρ2→1

S2 S2 η1,2

⊕

S1 S2

3

2

1

2

1

2

1

2

1

1

1

2

1

2

2

Fig. 1. Graph of clique-width 3, and a possible 3-expression tree (the last renaming
operations are omitted).

l-expression can be turned into an l-irredundant expression in linear time [7].
Therefore, we assume w.l.o.g. that the input expression is irredundant.

3 Framework of Our Algorithms

The input of our algorithms is a graph G on n vertices and an l-expression for
G, and the output is the number of objects (ex. matchings, paths) in G. The
procedure works by counting these objects at each step of the construction, by
using the expression tree : we start from the leaves and process a node once all
its children have been processed. Finally, the value at the root of the tree is the
output of the algorithm. Instead of doing it directly with the considered object,
we introduce appropriate intermediate objects, and we compute tables of values
at each step.

To avoid tedious case studies, we shall assume that requesting the value of
any vector outside of the range {0 . . . n} returns the value 0. Also, ∆r(l) is the
vector (δi,r)1≤i≤l, and ∆r,s(l) is the vector (δi,r · δj,s) 0≤i≤j≤l

(i,j) 6=(0,0)

, where δi,j is the

Kronecker delta:

δi,j =

{
1 if i = j;
0 otherwise.

(1)

We will omit the l when it is obvious from the context.

3 2

2

2

2

2

1

1

1

1

3 2

2

2

2

2

1

1

1

1

Fig. 2. Maximal matching of η1,2(G′), and the corresponding matching-cover pair of
G′.

4 Counting Maximal Matchings

Theorem 1. Computing the number of maximal matchings of a graph with n
vertices with a corresponding l-expression can be done in polynomial time in n
(but exponential w.r.t l).

We cannot directly use the previous framework on maximal matchings. In-
deed, consider M a maximal matching of G = ηi,j(G

′) and M ′ the induced
matching in G′: M ′ is not necessarily maximal. However, we can keep track of
the vertices of G′ that are covered in M , and those vertices must form a vertex
cover of the subgraph left uncovered by M ′. See Fig.2 for an example.

A matching-cover pair of a graph G = (V,E) is a pair (m, c) such that:

– m ⊆ E is a matching of G (i.e. no vertex is covered more than once);
– c ⊆ V is a vertex cover of the subgraph left uncovered by m (i.e. every edge

is covered at least once).

We show that computing the number of matching-cover pairs of a graph with
n vertices with a corresponding l-expression can be done in polynomial time in n.

Let M = (mi)1≤i≤l and C = (ci)1≤i≤l be two vectors of non-negative inte-
gers. For a graph G, we say that a pair (m, c) satisfies the condition ϕM,C(G) if
m covers mi vertices in Gi and c uses ci vertices in Gi for all i, and we denote by
mcM,C(G) the number of pairs that satisfy ϕM,C(G). Note that maximal match-
ings are exactly pairs with an empty cover; therefore, the number of maximal
matchings of G is

∑
k≤nmck·∆1,0(G).

Now we will follow the framework described above and compute mcM,C for
all possible M and C, at each step of the construction. We associate to each
node of the tree a table of size n2l corresponding to the values of mcM,C on this
graph for M and C ranging from (0, .., 0) to (n, .., n). For a singleton Si, we can
easily see that:

mcM,C(Si) =

{
1 if M = 0 and C = 0 or ∆i;
0 otherwise.

(2)

For the renaming operation G = ρi→j(G
′), the graph is not modified, but

all vertices of label i are set to label j. Hence, we modify the entries i and j
accordingly.

mcM,C(G) =
∑

M ′:(M,M ′)`φi,j

C′:(C,C′)`φi,j

mcM ′,C′(G′) (3)

where (X,X ′) ` φi,j ⇔

xj = x′i + x′j
xi = 0
∀k 6∈ {i, j}, xk = x′k

 (4)

For the disjoint union of two graphs G = G1⊕G2, we have a bijection between
matching-cover pairs (m, c) in G and pairs (m1, c1), (m2, c2) of matching-cover
pairs in G1 and G2, respectively. Moreover, if (m, c) satisfies ϕM,C , (m1, c1)
satisfies ϕM1,C1

and (m2, c2) satisfies ϕM2,C2
, we have M = M1 +M2 and C =

C1 + C2.

mcM,C(G) =
∑

M1+M2=M
C1+C2=C

mcM1,C1(G1) ·mcM2,C2(G2) (5)

For the edge creation operation G = ηi,j(G
′), we have to choose the extrem-

ities of the edges added to the matching among the vertices in the vertex cover.
If q is the number of new edges, we have:

mcM,C(G) =

n∑
q=0

mcM ′,C′(G′) ·
(
c′i
q

)
·
(
c′j
q

)
· q! (6)

where M ′ = M − q∆i − q∆j , C
′ = C + q∆i + q∆j (7)

Once the maximal matchings of all sizes are computed, it is straightforward
to count the number of perfect matchings and the number of minimum max-
imal matchings in polynomial time. Note that counting perfect matchings can
be achieved in O(n2l+1) time by adapting the matching counting algorithm pre-
sented in [14] in a similar fashion.

Complexity study: Obviously, there are exactly n singleton operations,
and each operation requires a constant amount of time. Every other operation
requires one to compute n2l values. As the expression is irredundant, every edge

creation operation adds at least one edge, so there are at most n2 edge creation
operations, processed in linear time. As a disjoint union operation has two chil-
dren in the tree, and there are n leaves, there are n−1 disjoint union operations,
and they require O(n2l) time.

For the renaming operation, consider the number of different labels at each
step of the construction. This number is one for a singleton, the edge creation
operation has no effect, the disjoint union is an addition in the worst case (no
shared label) and the renaming operation diminishes this number by one. There-
fore, there are at most n renaming operations, and they are done in O(n4) time.
The final sum requires O(nl) operations.

Therefore, the overall complexity of the algorithm is

O(n) +O(n2l) ·
(
O(n5) +O(n2l+1) +O(n3)

)
+O(nl) = O(n4l+1) (l ≥ 2). (8)

For (5, 2)-crossing-chordal graphs, we can compute an expression of width l = 3
in linear time and the algorithm runs in time O(n13).

5 Counting paths and path matchings

A path matching (or linear forest) is a disjoint union of paths, in other words, a
cycle-free set of edges such that no vertex is covered more than twice.

Theorem 2. Computing the number of paths pth(G) and the number of path
matchings pm(G) of a graph of clique-width ≤ k can be done in polynomial time
(but exponential w.r.t. k).

Proof. Let K = (ki,j) 0≤i≤j≤l
(i,j) 6=(0,0)

be a vector of non-negative integers. We say that

a path matching P of G satisfies the condition ψK if:

- ∀i > 0, k0,i vertices in Gi are left uncovered by P ;
- ∀(i, j), i ≤ j, ki,j paths in P have extremities in Gi and Gj .

We denote the number of path matchings in G satisfying ψK by pmK(G).

If i > j, we denote ki,j = kj,i. As K is of size l(l+3)
2 , we compute tables of size

n
l(l+3)

2 at each step.
For a singleton Si, the only possible path matching is empty and leave the

vertex uncovered.

∀K, pmK(Si) =

{
1 if K = ∆0,i;
0 otherwise.

(9)

For the renaming operation G = ρi→j(G
′), the method is the same as for

maximal matchings.

pmK(G) =
∑

K′:(K,K′)`φ

pmK′(G′) (10)

where (K,K ′) ` φ⇔

kj,j = k′j,j + k′i,j + k′i,i
∀a 6∈ {i, j}), ka,j = k′a,i + k′a,j
∀a, ka,i = 0
∀a 6∈ {i, j}, b 6∈ {0, i, j}, ka,b = k′a,b

 (11)

For the disjoint union operation G = G1 ⊕G2, we have a bijection between
path matchings p in G and pairs (p1, p2) of path matchings in G1 and G2,
respectively. Plus, if p1 satisfies ψK1 , p2 satisfies ψK2 and p satisfies ψK , we have
K = K1 +K2.

pmK(G) =
∑

K1+K2=K

pmK1(G1) · pmK2(G2) (12)

Consider now the edge creation operation G = ηi,j(G
′). We say a path match-

ing P in G is an extension of a path matching P ′ in G′ if P ∩G′ = P ′, so that
P = P ′ ∪ Ei,j where Ei,j is a subset of the edges added by the operation. Now,
if we consider a path matching P ′ in G′ that satisfies ψK′ , we claim that the
number of extensions of P ′ in G that satisfy ψK depends only on i, j,K ′ and
K (and not on P ′ or G′), and we represent it as Ni,j(K,K

′). Since every path
matching of G is an extension of an unique path matching of G′, we have:

pmK(G) =
∑
K′

pmK′(G′) ·Ni,j(K ′,K) (13)

Moreover, we can compute all the Ni,j(K
′,K) beforehand in O(nl(l+4)) time.

The proof of these claims is given in the appendix.

We can then compute the number of paths pth(G) and the number of path
matchings pm(G) with the formulas:

pth(G) =
∑

0≤a≤n

pmK(a)(G) where K(a) = a ·∆0,1 +∆1,1

pm(G) =
∑

1≤a+2b≤n

pmK(a,b)(G) where K(a, b) = a ·∆0,1 + b ·∆1,1

(14)

Complexity study: A singleton operation requires constant time. Every

other operation requires us to compute n
l(l+3)

2 values. For each value, the re-
naming operation in processed in linear time, the disjoint union operation in

O(nl
2

) time and the edge creation operation in O(n
l(l+3)

2) time.

The overall complexity of the algorithm is:{
O(nl

2+4l) for l ≤ 5;

O(n
3
2 (l

2+l)+1) for l > 5.
(15)

For (5, 2)-crossing-chordal graphs, we can compute in linear time an expres-
sion of width l = 3 and we have an algorithm running in O(n21) time.

6 Conclusion

These results seem to confirm the intuition that bounding clique-width is an ef-
ficient restriction on the input of #P -hard problems in order to allow the use of
polynomial algorithms. Notably, being able to count paths and path matchings
in polynomial time is interesting because connected structures are usually very
difficult to count. In that sense, the next logical step was to study the tree (or,
equivalently, forest) counting problem. However, our attempts to do so by using
a method similar to the one we used in the paper, only produced algorithms run-
ning in exponential time. Our feeling is that the tree counting problem remains
#P -complete for graphs of bounded clique-width, as this intuitive method keeps
giving bad results. It remains an open problem for now.

References

1. S. Arnborg, J. Lagergren and D. Seese: Easy Problems for Tree-Decomposable
Graphs, Journal of Algorithms, 12, pp. 308–340, 1991.

2. H. J. Bandelt and H. M. Mulder: Distance-hereditary Graphs, Journal of Combi-
natorial Theory, Series B, 41(2), pp. 182–208, 1986.

3. D. G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed and U. Rotics: Polynomial Time
Recognition of Clique-Width ≤ 3 Graphs, Proceedings of the 4th Latin American
Symposium on Theoretical Informatics, Lecture Notes in Computer Science, 1776,
pp. 126–134, 2000.

4. D. G. Corneil and U. Rotics: On the Relationship Between Clique-Width and
Treewidth, SIAM Journal of Computing, 34(4), pp. 825–847, 2005.

5. B. Courcelle, J. Engelfriet and G. Rozenberg: Handle-Rewriting Hypergraph Gram-
mars, J. Comput. Syst. Sciences, 46, pp. 218-270, 1993.

6. B. Courcelle, J. A. Makowsky and U. Rotics: Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique Width, Theory of Computing Systems,
33, pp. 125–150, 2000.

7. B. Courcelle and S. Olariu: Upper Bounds to the Clique-Width of Graphs, Discrete
Applied Mathematics, 101, pp. 77–114, 2000.

8. P. Dagum and M. Luby: Approximating the Permanent of Graphs with Large
Factors, Theoretical Computer Science, 102, pp. 283–305, 1992.

9. M. R. Fellows, F. A. Rosamond, U. Rotics and S. Szeider: Clique width Minimiza-
tion is NP-hard, Annual ACM Symposium on Theory of Computing, Proceedings
of the 38th annual ACM symposium on Theory of computing, session 8B, pp. 354–
362, 2006.

10. F. V. Fomin, P. A. Golovach, D. Lokshtanov and S. Saurabh: Algorithmic Lower
Bounds for Problems Parameterized by Clique-Width, Proceedings of the 21th
ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), ACM and SIAM,
pp. 493–502, 2010.

11. O. Gimenez, P. Hlineny and M. Noy, Computing the Tutte Polynomial on Graphs
of Bounded Clique-Width, LNCS 3787, pp.59-68, 2005.

12. M. C. Golumbic and U. Rotics: On the Clique-Width of Some Perfect Graph
Classes, International Journal of Foundations of Computer Science, 11(3), pp. 423–
443, 2000.

13. P. W. Kasteleyn: Dimer Statistics and Phase Transitions, Journal of Mathematical
Physics, 4, pp. 287–293, 1963.

14. J. A. Makowsky, U. Rotics, I. Averbouch and B. Godlin: Computing Graph Poly-
nomials on Graphs of Bounded Clique-Width, Lecture notes in Computer Science,
4271, pp. 191–204, 2006.

15. Y. Okamoto, T. Uno and R. Uehara: Counting the Independent Sets in a Chordal
Graph, Journal of Discrete Algorithms, 6(2), pp. 229-242, 2008.

16. Y. Okamoto, R. Uehara and T. Uno: Counting the Number of Matchings in Chordal
and Chordal Bipartite Graph Classes, Proceedings of 35th International Workshop
on Graph-Theoretic Concepts in Computer Science, LNCS, 5911, pp. 296–307,
2009

17. S. Oum and P. Seymour: Approximating Clique-Width and Branch-Width, Journal
of Combinatorial Theory, Series B, 96(4), pp. 514–528, 2006.

18. S. P. Vadhan: The Complexity of Counting in Sparse, Regular, and Planar Graphs,
SIAM Journal on Computing, 31, pp. 398–427, 2001.

19. L. G. Valiant: The Complexity of Computing the Permanent, Theoretical Com-
puter Science, 8, pp. 189–201, 1979.

20. L. G. Valiant: The Complexity of Enumeration and Reliability Problems, SIAM
Journal on Computing, 8, pp. 410–421, 1979.

Appendix

We now prove the case of Thm. 2 we have omitted. Let G and G′ be two labeled
graphs such that G = ηi,j(G

′) (for some i < j) and P ′ a path matching of G′

satisfying ψK′ for some K ′. For any K, we want to compute the number of ex-
tensions of P ′ in G satisfying ψK .

Definitions. For any path matching satisfying ψK , a path with two extrem-
ities x ∈ Gi and y ∈ Gj is called an (i, j)-path, and x and y are called partners.
We denote by Va(b) the vertices of Ga whose partner is in Gb, and by Va(0)
the uncovered vertices in Ga. We also note va,b = #Va(b), which means that
va,b = ka,b, except for va,a = 2ka,a (note that va,b depend only on K). An edge
which extremities are in Vi(a) and in Vj(b), respectively, is called an (a, b)-edge.

We use a dynamic programming technique to build all possible extensions of
P ′ by considering each vertex of G′i one by one in the order Vi(j), Vi(0), .., Vi(l)
(the reason for this order will be explained later). If X = (x0, .., xl) is a vec-
tor of non-negative integers and P1 a path matching in G1 that satisfies ψK1 ,
Ti,j(G1, P1,K2, X) stands for the number of extensions of P1 in ηi,j(G1) that
satisfy ψK2

and that uses only the xk last vertices of Vi(k) for every k.

At each step of the computation, the equations show that knowing G1 and
P1 is not necessary as long as ψK1

is satisfied: this proves our first claim, and
we write Ti,j(K1,K2, X) for Ti,j(G1, P1,K2, X). Also, since i, j and K2 are not
modified during the computation, we write T (K1, X) for Ti,j(K1,K2, X).

We now detail the different steps by increasing difficulty (instead of the actual
order of the algorithm). First, assume that xj = x0 = .. = xk−1 = 0 and

xk 6= 0 (for some k 6= i). We consider the first vertex in Vi(k) that has not been
considered yet in the computation. We have only two possibilities:

- No new edge adjacent to this vertex is added to the path matching.

- One new (k, a)-edge (possibly a = 0) is added to the path matching: we have
vj,a choices for the edge. A (i, k)-path and a (j, a)-path are transformed into
a (k, a)-path.

In each case, the value of the current K is updated accordingly and the vertex
is deleted from X. Next to each term is the set that contains the other extremity
of the edge being considered.

T (K”, X) = T (K”, X −∆k) ∅
+
∑

1≤a≤l

vj,a.T (K”−∆i,k −∆j,a +∆k,a, X −∆k) Vj(a)

+v0,j .T (K”−∆i,k −∆0,j +∆j,k, X −∆k) Vj(0)

(16)

Note that if a (k, i)-edge is added, the partner of another vertex of Vi(j) is
also modified: this is why Vi(j) is considered first in the computation, so that it
does not appear in X anymore at this step. This remark holds for all the other
cases except for k = j.

Now, we consider the first step (k = j). The situation is similar, but the
vertex cannot be linked to its own partner when k′ = i. Note that adding a
(j, i)-edge changes the partner of another vertex of Vi(j), but the new partner
is still in Gj , so doing this brings no modification to X.

T (K”, X) = T (K”, X −∆j) ∅
+
∑

1≤a≤l
a 6=i

vj,aT (K”−∆i,j , X −∆j) Vj(a)

+(vi,j − 1)T (K”−∆i,j , X −∆j) Vj(i)
+v0,j .T (K”−∆i,j −∆0,j +∆j,j , X −∆j) Vj(0)

(17)

For the uncovered vertices (k = 0), up to two edges can be added to the path
matching. The possibilities are:

- No new edge adjacent to this vertex is added to the matching.

- One new (k, k′)-edge is added to the matching: we have vj,k′ choices for the
edge. An uncovered vertex and a (j, k′)-path are transformed into a (x, k′)-
path.

- Two new (k, k′) and (k, k”)-edges are added to the matching: we have vj,k′ .vj,k”
choices for the two edges (only half of those when k′ = k”). An uncovered
vertex, a (j, k′)-path and a (j, k”)-path are transformed into a (k′, k”)-path.

T (K”, X) = T (K”, X −∆0) ∅
+
∑

1≤a≤l

vj,a.T (K”−∆0,i −∆j,a +∆i,a, X −∆0) Vj(a)

+ v0,j .T (K”−∆0,i −∆0,j +∆i,j , X −∆0) Vj(0)

+
∑

1≤a<b≤l

vj,a.vj,b.T (K”−∆0,i −∆j,a −∆j,b +∆a,b, X −∆0) Vj(a) | Vj(b)

+
∑

1≤a≤l

vj,a.v0,j .T (K”−∆0,i −∆0,j , X −∆0) Vj(a) | Vj(0)

+
∑

1≤a≤l
a 6=j

vj,a.(vj,a − 1)

2
.T (K”−∆0,i − 2∆j,a +∆a,a, X −∆0) Vj(a) | Vj(a)

+
v0,j .(v0,j − 1)

2
.T (K”−∆0,i − 2∆0,j +∆j,j , X −∆0) Vj(0) | Vj(0)

+
vj,j .(vj,j − 2)

2
.T (K”−∆0,i −∆j,j , X −∆0) Vj(j) | Vj(j)

(18)
For k = i , we consider the two extremities of the (i, i)-path at the same time.

Therefore, this situation is similar to the previous one, except that we have to
choose one of the extremities in each case. There are twice as many possibilities
as in the previous case.

T (K”, X) = T (K”, X − 2∆i) ∅
+
∑

1≤a≤l

2vj,a.T (K”−∆i,i −∆j,a +∆i,a, X − 2∆i) Vj(a)

+ 2v0,j .T (K”−∆i,i −∆0,j +∆i,j , X − 2∆i) Vj(0)

+
∑

1≤a<b≤l

2vj,a.vj,b.T (K”−∆i,i −∆j,a −∆j,b +∆a,b, X − 2∆i) Vj(a) | Vj(b)

+
∑

1≤a≤l

2vj,a.v0,j .T (K”−∆i,i −∆0,j , X − 2∆i) Vj(a) | Vj(0)

+
∑

1≤a≤l
a 6=j

vj,a.(vj,a − 1).T (K”−∆i,i − 2∆j,a +∆a,a, X − 2∆i) Vj(a) | Vj(a)

+ v0,j .(v0,j − 1).T (K”−∆i,i − 2∆0,j +∆j,j , X − 2∆i) Vj(0) | Vj(0)
+ vj,j .(vj,j − 2).T (K”−∆i,i −∆j,j , X − 2∆i) Vj(j) | Vj(j)

(19)
Now, if we have ∀k, xk = 0, then all the vertices have been considered and:

Ti,j(G1,K1,K2, 0) =

{
1 if K1 = K2

0 otherwise
(20)

The table of all possible Ti,j(K1,K2, X) is of size l2.nl(l+4). Using the pre-
vious equations, we can compute the table by increasing X in O(nl(l+4)) opera-
tions (individual equations are independent of n). We now have Ni,j(K

′,K) =
Ti,j(K

′,K,X) where ∀k 6= i, xk = k′i,k and xi = 2k′i,i.

