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Abstract. A pseudorandom point in an ergodic dynamical system over a
computable metric space is a point which is computable but its dynamics has

the same statistical behavior of a typical point of the system.

It was proved in [2] that in a system whose dynamics is computable the
ergodic averages of computable observables converge effectively. We give an

alternative, simpler proof of this result.

This implies that if also the invariant measure is computable then the
pseudorandom points are a set which is dense (hence nonempty) on the support

of the invariant measure.

We will consider abstract algorithmic questions concerning the evolution of a
dynamical system. In particular, the algorithmic estimation of the speed of conver-
gence of ergodic averages and the recursive construction of points whose dynamics
is typical for the system.

This latter problem is related to the possibility of computer simulations, as actual
computers can only calculate the evolution of computable initial conditions.

Let X be a metric space and let the iterations of a map T : X → X define a
dynamics. Let µ be an invariant measure for the dynamics (µ(A) = µ(T−1(A))
for each measurable set A). The famous Birkhoff ergodic theorem says that if µ
is ergodic (the only sets which are invariant for the dynamics have full or null
measure) then

lim
n→∞

1
n

∑
fi(Tn(x)) =

∫
f dµ , µ− almost everywhere.

Similar results can be obtained for the convergence in the L2 norm, and others.
The above result tells that, if the system is ergodic, there is a fulll measure set of
points for which the averages of the values of the observable f along its trajectory
(time averages) coincides with the spatial average of the observable f . Such a point
could be called typical for f (see Definition 12 for a notion of typicality which is
independent of the observable).
Estimating the speed of convergence. Many, more refined results are linked
to the speed of convergence of the above limit. We consider this problem from the
point of view of Computable Analysis. In the paper [2] some abstract results imply
that in a computable ergodic dynamical system, the speed of convergence of such
averages can be algorithmically estimated. On the other hand it is also shown that
there are non ergodic systems where this kind of estimations are not possible. In
this paper we present a simple, direct way to prove the following result:
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Theorem If (X,µ, T ) is an ergodic dynamical system and T is computable, then
for each computable L1 observable f the ergodic average An(x) = 1

n

∑n−1
i=0 f(T i(x))

converge effectively a.e. to
∫
f dµ.

This theorem has some interesting consequences, as we are going to illustrate.

Computable points having typical statistical behavior. Let us consider a
computable metric space X. The set of computable points in X, being countable,
is a very small (invariant) set, compared to the whole space. For this reason, a
computable point can rarely be expected to behave as a typical point of the space
and give rise to a typical statistical behavior of the dynamics. Here, as before,
“typical” behavior means a behavior which is attained for a full measure set of
initial conditions. Nevertheless computable points are the only points we can use
when we perform a simulation or some explicit computation on a computer.

A number of theoretical questions arise naturally from all these facts. Due to
the importance of the general forecasting-simulation problem these questions also
have a practical interest.

Problem 1. Since simulations can only start with computable initial conditions,
given some typical statistical behavior of a dynamical system, is there some com-
putable initial condition realizing this behavior? how to choose such points?

Such points could be called pseudorandom points. Meaningful simulations, show-
ing typical behaviors of the dynamics can be performed if computable, pseudoran-
dom initial conditions exist.

We remark that it is widely believed that computer simulations produce correct
ergodic behavior. The evidence is mostly heuristic. Most arguments are based on
the various “shadowing” results (see e.g. [9] chapter 18). In this kind of approach
(different from ours), it is possible to prove that in a suitable system every pseudo-
trajectory, as the ones which are obtained in simulations with some computation
error, is close to a real trajectory of the system. However, even if we know that
what we see in a simulation is near to some real trajectory, we do not know if this
real trajectory is typical in some sense.

The main limit of this approach is that shadowing results hold only in particu-
lar systems, having some uniform hyperbolicity, while many physically interesting
systems are not like this. We remark that in our approach we consider real trajec-
tories instead of “pseudo” ones and we ask if there is some computable point which
behaves as a typical point of the space.

Thanks to a kind of effective Borel-Cantelli lemma, in [6] the above problem is
solved affirmatively for a class of systems which satisfies certain technical assump-
tions which includes systems whose decay of correlation is faster that C log2(time).
In this paper we prove the following more general result, as a corollary of the above
theorem:

Corollary If (X,µ, T ) is a computable dynamical system as above and µ is a
computable invariant ergodic measure, there exist computable points x for which it
holds:

(0.1) lim
n→∞

f(x) + f(T (x)) + . . .+ f(Tn−1(x))
n

=
∫
f dµ
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for any continuous function f : X → R with compact support.

The above theorem states that in such systems there are computable points
whose time average equals the space average for any such observable on X, hence
providing a set of computable points which from the statistical point of view behave
as the typical points of (X,µ) in the Birkhoff point-wise ergodic theorem.

Physical measures and computability. To apply the above corollary to con-
crete systems the main difficulty is to verify that the invariant measure is com-
putable. In [6] and [8] it is shown that this is verified for the physical1 invariant
measure (the natural invariant measure to be considered in this cases) in several
classes of interesting systems as uniformly hyperbolic systems, piecewise expanding
maps and interval maps with an indifferent fixed point. On the other hand there are
computable systems having no computable invariant measure, which shows some
subtlety in this kind of questions.

The way we handle computability on continuous spaces is largely inspired by
representation theory (see [16],[3]). However, the main goal of that theory is to
study, in general topological spaces, the way computability notions depend on the
chosen representation. Since we focus only on computable metric spaces, we do not
use representation theory in its general setting but instead present computability
notions in a self-contained way, and hopefully accessible to non-specialists.

1. Computability

The starting point of recursion theory was to give a mathematical definition
making precise the intuitive notions of algorithmic or effective procedure on sym-
bolic objects. Several different formalizations have been independently proposed
(by Church, Kleene, Turing, Post, Markov...) in the 30’s, and have proved to be
equivalent: they compute the same functions from N to N. This class of functions
is now called the class of recursive functions. As an algorithm is allowed to run
forever on an input, these functions may be partial, i.e. not defined everywhere.
The domain of a recursive function is the set of inputs on which the algorithm
eventually halts. A recursive function whose domain is N is said to be total.

We now recall an important concept from recursion theory. A set E ⊆ N is
said to be recursively enumerable (r.e.) if there is a (partial or total) recursive
function ϕ : N→ N enumerating E, that is E = {ϕ(n) : n ∈ N}. If E 6= ∅, ϕ can be
effectively converted into a total recursive function ψ which enumerates the same
set E.

1 In general, given (X,T ) there could be infinitely many invariant measures (this is true
even if we restrict to probability measures). Among this class of measures, some of them are

particularly important. Suppose that we observe the behavior of the system (X,T ) through a
class of continuous functions fi : X → R. We are interested in the statistical behavior of fi along
typical orbits of the system. Let us suppose that the time average along the orbit of x exists

Ax(fi) = lim
n→∞

1

n

X
fi(T

n(x)).

This is a real number for each fi. Moreover Ax(fi) is linear and continuous with respect to small
changes of fi in the sup norm. Then the orbit of x acts as a measure µx and Ax(fi) =

R
fi dµx

(moreover this measure is also invariant for T ). This measure is physically interesting if it is given
by a “large” set of initial conditions. This set will be called the basin of the measure. If X is a
manifold, it is said that an invariant measure is physical if its basin has positive Lebesgue measure

(see [17] for a survey and more precise definitions).
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1.1. Algorithms and uniform algorithms. Strictly speaking, recursive func-
tions only work on natural numbers, but this can be extended to the objects
(thought as “finite” objects) of any countable set, once a numbering of its elements
has been chosen. We will use the word algorithm instead of recursive function when
the inputs or outputs are interpreted as finite objects. The operative power of al-
gorithms on the objects of such a numbered set obviously depends on what can be
effectively recovered from their numbers.

More precisely, let X and Y be numbered sets such that the numbering of X
is injective (it is then a bijection between N and X). Then any recursive function
ϕ : N → N induces an algorithm A : X → Y . The particular case X = N will be
much used.

For instance, the set Q of rational numbers can be injectively numbered Q =
{q0, q1, . . .} in an effective way: the number i of a rational a/b can be computed
from a and b, and vice versa. We fix such a numbering: from now and beyond the
rational number with number i will be denoted by qi.

Now, let us consider computability notions on the set R of real numbers, intro-
duced by Turing in [15].

Definition 1. Let x be a real number. We say that:
• x is lower semi-computable if the set {i ∈ N : qi < x} is r.e.
• x is upper semi-computable if the set {i ∈ N : qi > x} is r.e.
• x is computable if it is lower and upper semi-computable.

Equivalently, a real number is computable if and only if there exists an algorith-
mic enumeration of a sequence of rational numbers converging exponentially fast
to x. That is:

Proposition 1. A real number is computable if there is an algorithm A : N→ Q
such that |A(n)− x| ≤ 2−n for all n.

Uniformity. Algorithms can be used to define computability notions on many
classes of mathematical objects. The precise definitions will be particular to each
class of objects, but they will always follow the following scheme:

An object O is computable if there is an algorithm

A : X → Y

which computes O in some way.

Each computability notion comes with a uniform version. Let (Oi)i∈N be a
sequence of computable objects:

Oi is computable uniformly in i if there is an algorithm

A : N×X → Y

such that for all i, Ai := A(i, ·) : X → Y computes Oi.

For instance, the elements of a sequence of real numbers (xi)i∈N are uniformly
computable if there is a algorithm A : N × N → Q such that |A(i, n) − xi| ≤ 2−n

for all i, n.
In each particular case, the computability notion may take a particular name:

computable, recursive, effective, r.e., etc. so the term “computable” used above
shall be replaced.
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1.2. Computable metric spaces. A computable metric space is a metric space
with an additional structure allowing to interpret input and output of algorithms
as points of the metric space. This is done in the following way: there is a dense
subset (called ideal points) such that each point of the set is identified with a
natural number. The choice of this set is compatible with the metric, in the sense
that the distance between two such points is computable up to any precision by an
algorithm getting the names of the points as input. Using these simple assumptions
many constructions on metric spaces can be implemented by algorithms.

Definition 2. A computable metric space (CMS) is a triple X = (X, d, S),
where

(i) (X, d) is a separable metric space.
(ii) S = {si}i∈N is a countable dense subset of X called the set of ideal points.
(iii) The distances between ideal points d(si, sj) are all computable, uniformly

in i, j (there is an algorithm A : N3 → Q such that |A(i, j, n)− d(si, sj)| <
2−n).

S is a numbered set, and the information that can be recovered from the numbers
of ideal points is their mutual distances. Without loss of generality, we will suppose
the numbering of S to be injective: it can always be made injective in an effective
way.

We say that in a metric space (X, d), a sequence of points (xn)n∈N converges
fast to a point x if d(xn, x) ≤ 2−n for all n.

Definition 3. A point x ∈ X is said to be computable if there is an algorithm
A : N→ S such that (A(n))n∈N converges fast to x.

We define the set of ideal balls to be B := {B(si, qj) : si ∈ S, 0 < qj ∈ Q}
where B(x, r) = {y ∈ X : d(x, y) < r} is an open ball. We fix a numbering
B = {B0, B1, . . .} which makes the number of a ball effectively computable from
its center and radius and vice versa (this numbering may not be injective). B is a
countable basis of the topology.

Definition 4 (Effective open sets). We say that an open set U is effective if there
is an algorithm A : N→ B such that U =

⋃
nA(n).

Observe that an algorithm which diverges on each input n enumerates the empty
set, which is then an effective open set. Sequences of uniformly effective open sets
are naturally defined. Moreover, if (Ui)i∈N is a sequence of uniformly effective open
sets, then

⋃
i Ui is an effective open set.

Definition 5 (Effective Gδ-set). An effective Gδ-set is an intersection of a se-
quence of uniformly effective open sets.

Obviously, an intersection of uniformly effective Gδ-sets is also an effective Gδ-
set.

Let (X,SX = {sX1 , sX2 , ...}, dX) and (Y, SY = {sY1 , sY2 , ...}, dY ) be computable
metric spaces. Let also BXi and BYi be enumerations of the ideal balls in X and
Y . A computable function X → Y is a function whose behavior can be computed
by an algorithm up to any precision. For this it is sufficient that the pre-image of
each ideal ball can be effectively enumerated by an algorithm.
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Definition 6 (Computable Functions). A function T : X → Y is computable
if T−1(BYi ) is an effective open set, uniformly in i. That is, there is an algorithm
A : N× N→ BX such that T−1(BYi ) =

⋃
nA(i, n) for all i.

A function T : X → Y is computable on D ⊆ X if there are uniformly effective
open sets Ui such that T−1(BYi ) ∩D = Ui ∩D.

1.3. Computable measures. Let us consider the space PM(X) of Borel proba-
bility measures over X. Let C0(X) be the set of real-valued bounded continuous
functions on X. We recall the notion of weak convergence of measures:

Definition 7. µn is said to be weakly convergent to µ if
∫
f dµn →

∫
f dµ for

each f ∈ C0(X).

Let us introduce the Wasserstein-Kantorovich distance between measures. Let
µ1 and µ2 be two probability measures on X and consider:

W1(µ1, µ2) = sup
f∈1-Lip(X)

∣∣∣∣∫ f dµ1 −
∫
f dµ2

∣∣∣∣ ,
where 1-Lip(X) is the space of functions on X having Lipschitz constant less than
one. We remark that since adding a constant to the test function f does not change
the above difference

∫
f dµ1 −

∫
f dµ2, the supremum can be taken over the set of

1-Lipschitz functions mapping a distinguished ideal point s0 to 0. The distance W1

has the following useful properties

Proposition 2 (see [1] Prop 7.1.5).
(1) W1 is a distance and if X is bounded, separable and complete, then PM(X)

with this distance is a separable and complete metric space.
(2) If X is bounded, a sequence is convergent for the W1 metrics if and only if

it is convergent for the weak topology.

Item (1) has an effective version: PM(X) inherits the computable metric struc-
ture of X. Indeed, given the set SX of ideal points of X we can naturally define a
set of ideal points SPM(X) in PM(X) by considering finite rational convex combi-
nations of the Dirac measures δs supported on ideal points s ∈ SX . This is a dense
subset of PM(X). The proof of the following proposition can be found in ([11]).

Proposition 3. If X bounded then (PM(X),W1,SPM(X)) is a computable metric
space.

A measure µ is then computable if there is a sequence µn ∈ SPM(X) converging
exponentially fast to µ in the W1 metric (and hence µn weakly converge to µ).

1.4. Computable probability spaces. To obtain computability results on dy-
namical systems, it seems obvious that some computability conditions must be
required on the system. But the “good” conditions, if any, are not obvious to
specify.

A computable function defined on the whole space is necessarily continuous. But
a transformation or an observable need not be continuous at every point, as many
interesting examples prove (piecewise-defined transformations, characteristic func-
tions of measurable sets,... ), so the requirement of being computable everywhere is
too strong. In a measure-theoretical setting, a natural weaker condition is to require
the function to be computable on a set of full measure. It can be proved that such
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a function can be extended to a function which is computable on a full-measure
effective Gδ-set (see [11, 10]).

Definition 8. A computable probability space is a pair (X,µ) where X is a
computable metric space and µ a computable Borel probability measure on X.

Let Y be a computable metric space. A function (X,µ)→ Y is almost every-
where computable (a.e. computable for short) if it is computable on an effective
Gδ-set of measure one, denoted by domf and called the domain of computability
of f .

A morphism of computable probability spaces f : (X,µ)→ (Y, ν) is a morphism
of probability spaces which is a.e. computable.

Remark 1. A sequence of functions fn is uniformly a.e. computable if the func-
tions are uniformly computable on their respective domains, which are uniformly
effective Gδ-sets. Observe that in this case, intersecting all the domains provides
an effective Gδ-set on which all fn are computable. In the following we will apply
this principle to the iterates fn = Tn of an a.e. computable function T : X → X,
which are uniformly a.e. computable.

The space L1(X,µ) (resp. L2(X,µ)) can be made a computable metric space,
choosing some dense set of bounded computable functions as ideal elements. We
say that an integrable function f : X → R is L1(X,µ)-computable if its equivalence
class is a computable element of the computable metric space L1(X,µ). Of course,
if f = g µ-a.e., then f is L1(X,µ)-computable if and only if g is. Basic operations
on L1(X,µ), such as addition, multiplication by a scalar, etc. are computable.

1.4.1. Application to convergence of random variables. Here, (X,µ) is a computable
probability space, where X is complete.

Definition 9. A random variable on (X,µ) is a measurable function f : X → R.

Definition 10. Random variables fn effectively converge in probability to f
if for each ε > 0, µ{x : |fn(x) − f(x)| < ε} converges effectively to 1, uniformly
in ε. That is, there is a computable function n(ε, δ) such that for all n ≥ n(ε, δ),
µ{|fn − f | ≥ ε} < δ.

Definition 11. Random variables fn effectively converge almost surely to f
if f ′n = supk≥n |fk − f | effectively converge in probability to 0.

The following result ([6], Theorem 2) shows that if a sequence fn converges
effectively a.s. to f then there are computable points which for which fn(x)→ f(x).

Theorem 1. Let X be a complete metric space. Let fn, f be uniformly a.e. com-
putable random variables. If fn effectively converges almost surely to f then the set
{x : fn(x) → f(x)} contains an effective Borel-Cantelli set (see the Appendix for
the precise definition).

In particular, it contains a sequence of uniformly computable points which is
dense in Supp(µ).

Remark 2. Moreover, the effective Borel Cantelli Set found above depends algo-
rithmically on fn and on the function n(δ, ε) giving the rate of convergence (see the
proof of Theorem 2 in [6]). Hence the result is uniform in fn and n(δ, ε).
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1.5. Effective L1, L2 convergence. Let (X,T, P ) be a computable measure-
preserving system and f a L1-computable function (in the sense that it is a com-
putable point of the metric space L1). It was proved in [2] that the (L1, L2 and
almost sure) convergence of the Birkhoff averages of f is effective as soon as the
limit f∗ has a computable norm. Here we give an alternative proof for the ergodic
case, which is simpler as it uses the classical convergence result instead of giving a
“constructive” proof.

Let us call (X,µ, T ) a computable ergodic system if (X,µ) is a computable
probability space where X is complete, T is an endomorphism (i.e. an a.e. com-
putable measure-preserving transformation) and (X,µ, T ) is ergodic. Let ||f || de-
note the L1 norm or the L2 norm.

Proposition 4. Let (X,µ, T ) be a computable ergodic system. Let f be a com-
putable element of L1(X,µ) (resp. L2(X,µ)).

The L1 convergence (resp. L2 convergence) of the Birkhoff averages of f is
effective.

Proof. Replacing f with f −
∫
fdµ, we can assume that

∫
fdµ = 0. Let An =

(f + f ◦ T + . . . + f ◦ Tn−1)/n. The sequence ||An|| is computable and converges
to 0 by the ergodic theorems.

Given p ∈ N , we write m ∈ N as m = np+ k with 0 ≤ k < p. Then

Anp+k =
1

np+ k

(
n−1∑
i=0

pAp ◦ T pi + kAk ◦ T pn
)

||Anp+k|| ≤
1

np+ k
(np||Ap||+ k||Ak||)

≤ ||Ap||+
||Ak||
n

≤ ||Ap||+
||f ||
n
.

Let ε > 0. We can compute some p = p(ε) such that ||Ap|| < ε/2. Then we can
compute some n(ε) ≥ 2

ε ||f ||. The function m(ε) := n(ε)p(ε) is computable and for
all m ≥ m(ε), ||Am|| ≤ ε. �

1.6. Effective almost sure convergence. Now we use the above result to find a
computable estimation for the a.s. speed of convergence.

Theorem 2. Let (X,µ, T ) be a computable ergodic system. If f is L1(X,µ)-
computable, then the a.s. convergence is effective.

This will be proved by the following

Proposition 5. If f is L1(X,µ)-computable, and ||f ||∞ is bounded by a computable
number, then the almost-sure convergence is effective.

To prove this we will use the Maximal ergodic theorem:

Lemma 1 (Maximal ergodic theorem). For f ∈ L1(X,µ) and δ > 0,

µ({sup
n
|Afn| > δ}) ≤ 1

δ
||f ||1.
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The idea is simple: compute some p such that ||Afp ||1 is small, apply the maximal
ergodic theorem to g := Afp , and then there is n0, that can be computed, such that
Afn is close to Agn for n ≥ n0.

Proof. Let ε, δ > 0. Compute p such that ||Afp || ≤ δε/2. Applying the maximal
ergodic theorem to g := Afp gives:

(1.1) µ({sup
n
|Agn| > δ/2}) ≤ ε.

Now, Agn is not far from Afn: expanding Agn, one can check that

Agn = Afn +
u ◦ Tn − u

np
,

where u = (p − 1)f + (p − 2)f ◦ T + . . . + f ◦ T p−2. ||u||∞ ≤ p(p−1)
2 ||f ||∞ so if

n ≥ n0 ≥ 2(p − 1)||f ||∞/δ, then ||Agn −Afn||∞ ≤ δ/2. As a result, if |Afn(x)| > δ
for some n ≥ n0, then |Agn(x)| > δ/2. From (1.1), we then derive

µ({ sup
n≥n0

|Afn| > δ}) ≤ ε.

As n0 can be computed from δ and ε, we get the result. �

Remark 3. This result applies uniformly to a uniform sequence of computable
L∞(X,µ) observables fn.

We now extend this to L1(X,µ)-computable functions, using the density of
L∞(X,µ) in L1(X,µ).

Proof. (of Theorem 2) Let ε, δ > 0. For M ∈ N , let us consider f ′M ∈ L∞(X,µ)
defined as

f ′M (x) =
{

min(f,M) if f(x) ≥ 0
max(f,M) if f(x) ≤ 0.

Compute M such that ||f − f ′M ||1 ≤ δε. Applying Proposition 5 to f ′M gives
some n0 such that µ({supn≥n0

|Af
′
M
n | > δ}) < ε. Applying Lemma 1 to f ′′M = f−f ′M

gives µ({supn |A
f ′′
M
n | > δ}) < ε. As a result, µ({supn≥n0

|Afn| > 2δ}) < 2ε. �

Remark 4. Also Theorem 2 applies uniformly on an uniform sequence of com-
putable L1(X,µ) observables fn.

Remark 5. We remark that a bounded a.e. computable function, as defined in
Definition 8 is a computable element of L1(X,µ) (see [12]). Conversely, if f is a
computable element of L1(X,µ) then there is a sequence of uniformly computable
functions fn that effectively converge µ-a.e. to f . Let g be the point-wise limit of
fn (defined µ-a.e.): our main result, Theorem 3 can also be proved to hold for the
observable g, i.e. in a computable ergodic system there exists computable points for
which the Birkhoff averages of g converge to

∫
g dµ.
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2. Pseudorandom points and dynamical systems

As said before the famous Birkhoff ergodic theorem says that in an ergodic
system, the time average computed along µ-almost every orbit coincides with space
average with respect to µ. More precisely, for every f ∈ L1(X,µ) and µ-almost
every x it holds

(2.1) lim
n→∞

Sfn(x)
n

=
∫
f dµ,

where Sfn = f+f ◦T + . . .+f ◦Tn−1. We remark that from now on we will suppose
that X is a complete metric space.

If a point x satisfies equation 2.1 for a certain f , then we say that x is typical
with respect to the observable f .

Definition 12. A point x is µ-typical if x is typical w.r.t. every continuous
function f : X → R with compact support.

We will see that such µ−typical points exist in computable ergodic systems.
First we give a result for L1 observables.

Theorem 3. If (X,µ, T ) is a computable ergodic system and f is L1(X,µ) and
a.e. computable then there is a uniform sequence xn of computable points which is
dense on the support of µ such that for each n

lim
n→∞

1
n

∑
f(Tn(xn)) =

∫
f dµ.

Proof. Apply theorem 1 to the sequence of uniformly a.e. computable functions
fn = Sφn

n which converge effectively almost-surely by theorem 2. We obtain that the
set of points for which 1

n

∑
f(Tn(xn))→

∫
f dµ contains a sequence of computable

points. �

Since it is possible to construct a r.e. set of computable functions which is dense
in the space of compactly supported continuous functions we can also obtain the
following

Theorem 4. If (X,µ, T ) is a computable ergodic system then there is a uniform
sequence xn of computable points which in dense on the support of µ such that for
each n, xn is µ−typical.

Proof. Let us introduce (following [7]) a certain fixed, enumerated sequence of Lip-
schitz functions. Let F0 be the set of functions of the form:

(2.2) gs,r,ε = |1− |d(x, s)− r|+/ε|+

where s ∈ S, r, ε ∈ Q and |a|+ = max{a, 0}.
gs,r,ε is a Lipschitz functions whose value is 1 inside the ideal ball B(s, r), 0

outside B(s, r + ε) and with intermediate values in between. It is easy to see that
the real-valued functions gsi,rj ,εk : X → R are computable, uniformly in i, j, k.

Let F be the smallest set of functions containing F0 and the constant 1, and
closed under max, min and rational linear combinations. Clearly, this is also a
uniform family of computable functions. We fix some enumeration νF of F and we
write gn for νF (n) ∈ F . We remark that this set is dense in the set of continuous
functions with compact support.
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By Remark 5 moreover these are computable elements of L1(X,µ), hence The-
orem 2 applies uniformly to these observables. This means that we can apply
Theorem 1 uniformly on this sequence. By intersecting all effective Borel-Cantelli
sets given by Theorem 1, since the intersection of a uniform family of effective BC
sets contains an effective BC set (see Remark 2 and Proposition 6) and such a set
contains computable points which are dense in the support of µ (see Theorem 5),
we obtain the existence of a sequence of computable points (dense on the support
of µ) which are typical for all observables in F (in the same way as in Theorem 3).
Since each continuous function f with compact support can be approximated in the
L∞ norm by a function in F (and in particular the approximating function in F
have values near the values of f at almost each point) the statement is proved. �

3. Appendix: effective BC sets

We recall some results from [6] which are used in the proofs of the present
paper. Given a measurable space X endowed with a probability measure µ, the
well known Borel-Cantelli lemma states that if a sequence of sets Ak is such that∑
µ(Ak) < ∞ then the set of points which belong to finitely many Ak’s has full

measure. In this section we show that if the Ak are given in some “effective” way
(and µ is computable) then this full measure set contains computable points, which
can be effectively constructed.

Definition 13. A sequence of positive numbers ai is effectively summable if the
sequence of partial sums converges effectively: there is an algorithm A : Q→ N
such that if A(ε) = n then

∑
i≥n ai ≤ ε.

For the sake of simplicity, we will focus on the complements Un of the An.

Definition 14. An effective Borel-Cantelli sequence is a sequence (Un)n∈N of uni-
formly effective open sets such that the sequence µ(X \Un) is effectively summable.

The corresponding effective Borel-Cantelli set is
⋃
k

⋂
n≥k Un.

Proposition 6. The intersection of any uniform family of effective Borel-Cantelli
sets contains an effective Borel-Cantelli set.

Theorem 5. Let X be a complete Computable Metric Space and µ a computable
Borel probability measure on X.

Every effective Borel-Cantelli set R, contains a sequence of uniformly computable
points which is dense in the support of µ.
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[5] P. Gács, M. Hoyrup, C. Rojas. Randomness on computable probability spaces - a dynamical
point of view. In Susanne Albers and Jean-Yves Marion, editors, 26th International Sympo-

sium on Theoretical Aspects of Computer Science (STACS 2009), 469–480
[6] S. Galatolo, M. Hoyrup, and C. Rojas. A constructive Borel-Cantelli lemma. Constructing

orbits with required statistical properties. Theor. Comput. Sci., 410, (2009) 2207–2222,.



12 STEFANO GALATOLO, MATHIEU HOYRUP, AND CRISTOBAL ROJAS
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